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In an earlier work, we described how an unstructured grid numerical framework based on an energy-con-
serving Arakawa C-grid discretization could be applied to ocean general circulation models (OGCMs). We
discuss herein how we adapted our previously published rigid-lid, hydrostatic, Boussinesq OGCM tech-
niques to shallow-water and baroclinic free-surface dynamics. The simulation of the global M2 tide is pro-
posed as a useful benchmark for testing unstructured grid ocean models. Tidal simulations are much
more manageable that full-fledged OGCM climate simulations, being based on simpler physical assump-
tions and parameterizations, and requiring less computation time per test. We demonstrate that the
results of unstructured Arakawa C-grid simulations of the M2 tide reproduce those of an equivalent reg-
ular grid discretization. Because unstructured grid methods carry a computational overhead, however,
their use can only be justified where resolution must be concentrated in localized regions. The tides
around Hudson’s Bay are well-described in a multi-scale context, and we show that strong discontinuities
in mesh resolution do not appreciably distort the shallow-water tidal solution. Progressing to fully 3-D
models, it is demonstrated that the barotropic M2 tidal structure is consistently represented between
models. Efforts to resolve the generation of baroclinic waves by the barotropic tide were, however, frus-
trated by the existence of a numerical mode that has been independently verified by other investigators
working on similar methods. This presents a challenge for future work.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In a previous paper (Stuhne and Peltier, 2006, hereafter SP), we
described a new numerical framework for unstructured grid ocean
modeling on a global scale. Prior to that work, the published appli-
cations of unstructured meshes to oceanography had been re-
stricted to smaller scale coastal and tidal modeling (see, e.g.
Myers and Weaver, 1995; Lynch et al., 1996; Casulli and Walters,
2000; Chen et al., 2003; Nechaev et al., 2003; Zhang et al., 2004).
A number of potential advantages motivated us to extend this
promising numerical technology to the simulation of the global
ocean. For one thing, the global ocean circulation is affected by
dynamics on many scales, and some localized small-scale pro-
cesses exert inordinate influence on the system as a whole. Wes-
tern boundary currents like the Gulf Stream are a case in point. It
is a clear benefit to be able to increase mesh resolution in local re-
gions of interest, without having to resolve the entire global do-
main finely enough to accommodate the smallest simulated
features. Apart from some basic grid stretching and remapping
techniques (e.g., Murray, 1996), traditional regular grid ocean gen-
eral circulation models (OGCMs) inspired by the early efforts of
ll rights reserved.
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Bryan (1969) and Bryan and Cox (1972) offer few options in this re-
gard. Unstructured grid techniques are, on the other hand, natu-
rally suited to multi-scale modeling.

One of the problems that motivated this work is that of global
climate modeling, which raises many issues relating to multiple
scales and localized regions of interest. For instance, the concentra-
tion of the northern sea-ice mass in the narrow channels of the
Arctic archipelago can have a great impact on climate because of
the effects on the global thermohaline circulation (THC). The work
reported in SP included results from 3-D, 5-year annually forced
simulations of the global ocean, whose climatological spin-up
was captured with rudimentary success. The mathematical model
that was adopted built upon the coastal modeling work of Casulli
and Walters (2000), which was extended into an energy-conserv-
ing, fully spherical, z-coordinate, rigid-lid hydrostatic Boussinesq
model with temperature and salinity tracers. This dynamical sys-
tem was discretized on an Arakawa (1966) C-type horizontal grid,
using a spherical shell version of the Perot (2000) projection
scheme for the momentum equation. The use of the projection
makes it possible to preserve quadratic invariants (squared tem-
perature and salinity, as well as total energy) to arbitrarily pre-
scribed accuracy.

Subsequent to the publication of SP, a somewhat similar
non-spherical and non-hydrostatic model was described by
ructured C-grid based method for 3-D global ocean dynamics: ...,
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Fringer et al. (2006), who followed Casulli and Walters (2000)
in applying it to small-scale coastal modeling problems. This
model, named SUNTANS by the authors, is less stringent about
maintaining energy conservation, which imposes a computa-
tional cost during C-grid implicit time stepping. Although the
two methodologies should produce comparable results in prac-
tice, ours is more theoretically rigorous, and the quantitative
degree of energy conservation can be tuned down and com-
promised when greater efficiency is desired. The ability to
control the conservation properties of the methods of SP
should be a significant advantage in the validation of cli-
mate-type simulations, in which the numerical drift of invari-
ants can have serious long-term effects. Beyond the
conservation issue, Fringer et al. (2006) did also implement
a few relevant features that we did not address in SP. Most
significantly, SUNTANS can accommodate an implicit linear
free surface when a hydrostatic constraint is activated. We
will describe below how these dynamics are implemented in
our scheme, which applies to fully spherical geometry. Overall,
our work fills an important gap in the literature about the
Arakawa C-grid family of methods, which have not previously
been applied to the large-scale, coarsely resolved problems of
climate dynamics.

Rather than grapple with numerical issues in the climatological
context, where test runs take a very long time and results depend
upon elaborate ad hoc assumptions, we shifted our attention to the
simpler problem of simulating the global tides. Tidal dynamics also
exhibit multiple geometry-induced scales and a rich range of baro-
tropic and baroclinic phenomena, but play out on a time-scale of
days, as opposed to years and decades. At the same time, the sim-
ple a priori assumptions behind tidal analyses have long been well
understood, while the observational data sets that are available for
comparison purposes are constantly improving (see, e.g., Egbert
and Ray, 2003 and references). All of these factors make the prob-
lem of tidal simulation an ideal benchmark for testing new global
unstructured grid ocean models. In this study, we will focus exclu-
sively on the case of the global M2 tide, which has been extensively
analyzed and observed.

Since the leading-order tidal response is linear and well
represented even by shallow-water dynamics, comparisons
can begin in this regime, and then evolve through increasing
levels of sophistication, i.e.: nonlinearity, new parameteriza-
tions, three-dimensionality, stratification, etc. (e.g., Gill, 1982).
It would be a great success for a global unstructured grid tidal
circulation model, if it were able to capture the local produc-
tion of baroclinic waves by the barotropic tide. This problem
has been addressed in the context of local, high resolution fi-
nite element models (e.g., Hall and Davies, 2005), but global
simulations have been carried out successfully only fairly re-
cently, even in the structured grid context (see Simmons
et al., 2004). There are still many open issues of physics that
a multi-scale unstructured grid modeling framework might
help to resolve. We have not yet attained this goal with our
own methods, but we present a sequence of analyses that
helps to frame the problem.

The numerical methods described in SP did not represent the
dynamics of the free surface of the ocean, a feature that is clearly
essential for any kind of barotropic tidal simulation. In Section 2,
we introduce a suitably generalized version of the numerical struc-
ture, along with the simple mathematical tidal model that is being
assumed. Extensive background discussion pertaining to the origi-
nal numerical methods of SP and the model assumptions will not
be provided here, and the reader will instead be directed to the rel-
evant literature. In Section 3, a progression of test simulations will
be discussed, while conclusions and future directions will be ad-
dressed in Section 4.
Please cite this article in press as: Stuhne, G.R., Peltier, W.R., An unst
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2. Model and numerical discretization

2.1. Dynamical equations

The most general dynamical model that is utilized in the pres-
ent study makes use of the same hydrostatic and Boussinesq
approximation as SP. These assumptions pertain to the interior of
the fluid, while the addition of the free surface dynamics pertains
to the upper boundary condition, which is considered below in
Section 2.2. In the present study, we can make do with using a sim-
ple density representation of the scalar dynamics, so the equation
of state in the hydrostatic balance constraint becomes trivial.
Assuming a non-dimensionalization whose respective length and
time units are r0 and 2p=X0 (r0 being the radius of the Earth at
sea level, and X0 being the planetary rotation rate), then the hydro-
static condition relating q to pressure, p, has the form

4p2

X2
0r0q0

ðr̂ � rpþ gqÞ ¼ @p̂
@z
þ q̂ ¼ 0; ð1Þ

in which z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 1 is the offset vertical coordinate, r̂ is

the local radial basis vector, q0 is the Boussinesq background den-
sity and g is the acceleration due to gravity.

We work in a general regular coordinate representation in
which total fluid velocity is v ¼ vxx̂þ vyŷ þ vzẑ, while vertical and
horizontal fluid velocities are defined, respectively, as w � v � r̂
and u � v�wr̂. With these definitions in place, the Boussinesq
volume conservation condition and advection operator are given
by

r � v ¼ r � uþ @w
@z
¼ 0v � r ¼ u � r þw

@

@z
; ð2Þ

and we can write down the prognostic dynamical equations for the
interior of the fluid volume: i.e.,

@u
@t
þ v � r �Dðmh; mvÞ þ 4pẑ�½ �uþrp ¼ Fu þKr̂

@q
@t
þ v � r �Dðlh;lvÞ
� �

q ¼ 0:
ð3Þ

Dðj;rÞ in Eq. (3) is a schema for a linear diffusion operator with
respective horizontal and vertical diffusivities j and r. The coeffi-
cients mh, mv, lh and lv can in general vary in space and time accord-
ing to complex parameterizations, but for purposes of the present
study they can be assumed constant. Meanwhile, K is a Lagrangian
multiplier for a constraint force that must act to keep fluid particles
confined to a spherical shell when w ¼ 0 and v ¼ u (see Cøté (1988)
and SP for a discussion of this). Since the discretization implicitly
introduces constraints, we do not need to worry about the specific
form of K. The remaining term in Eq. (3), Fu, pertains to the forcing
on the momentum equation, and is considered in the following
subsection.

2.2. Boundary conditions and the shallow water model (SWM)

The surface boundary condition is determined by the integrated
3-D continuity equation, which has the form

@g
@t
þr � U ¼ 0; ð4Þ

in which the net horizontal flux, U, is the vertically integrated hor-
izontal velocity: i.e.,

U �
Z g

�H
udz: ð5Þ

A linear free surface results when g is set to 0 in Eq. (5), and a
rigid lid condition can then be imposed if one also sets @g

@t ¼ 0 in
Eq. (4).
ructured C-grid based method for 3-D global ocean dynamics: ...,
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Eqs. (3)–(5) determine the SWM if we set q ¼ qc and

u ¼ v ¼ U
H þ g

for a single layer of fluid, which gives us the following form of the
momentum equation, i.e.:

@u
@t
þ ½u � r �Dðmh; mvÞ þ 4pẑ��uþ qcrg ¼ Fu þKr̂: ð6Þ
2.3. Tidal forcing and dissipation

The form of the forcing function in Eqs. (3) and (6) is given by

Fu ¼ �rðqg�Þ þ Fbott
u ; ð7Þ

in which g� has the form

g� ¼ cgþ AM2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

ðy cos XM2 t � x sin XM2 tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; ð8Þ

corresponding to the standard M2 tidal forcing function (amplitude
and period AM2 and XM2 , respectively) with a self-attraction and
loading term (coefficient c). The bottom stress is represented in
Eq. (7) as a volume forcing over a boundary layer of height dz, giving

Fbott
u ¼

�cdudðjujÞu
dz for � H 6 z 6 �H þ dz

0 elsewhere:

(
ð9Þ

If dz is the height of the discrete computational element above
the lower boundary, then Eq. (9) is equivalent to a finite difference
representation of a bottom drag stress with coefficient cd. The bot-
tom drag can be nonlinear (with udðj u jÞ ¼j u j) or linear (with
udðj u jÞ ¼ U�, for constant U�).

2.4. Discretization

The discretization of the rigid-lid model was described in great
detail in SP, wherein we developed an algebraic notation scheme
for expressing the discrete equations in compact form. Since the
basic numerical structure is still the same, we will, in what follows,
discuss high-level expressions while omitting most of the details
about how these translate into basic arithmetical operations. A
Fig. 1. A representation of four neighboring surface triangles that illustrates the indexing
normals, and face circumcenters). Reproduced from SP.
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basic summary is provided in this section, and readers requiring
further information are directed to our earlier paper.

We begin by writing down the space-time discretization of the
3-D baroclinic model. The evolution equations for horizontal veloc-
ity, u, density, q, and surface displacement, g, have the following
high-level form: i.e.,

urþ1 � ur

Dt
þ ~C�1 � f½Lður ; mh; mvÞ þ 4pẑ��~Curþ1

2 � Fr
ug ¼ �

Dprþ1
2

jDXj
qrþ1 � qr

Dt
þLður ;lh;lvÞqrþ1

2 ¼ 0

grþ1 � gr

Dt
¼ w

rþ1
2

z¼0:

ð10Þ

The superscript r specifies the time-level at which a quantity is
evaluated, with vrþ1

2 denoting the average 1
2 ðvr þ vrþ1Þ and Dt being

the time-step size. The operators ~C and ~C�1 are defined below in
Eq. (11).

The dynamical fields are evaluated on an Arakawa C-grid with a
prismatic z-coordinate representation of the vertical structure. The
bathymetry is approximated by bottom truncation and boundaries
between vertical levels are everywhere at the same depth,
although layers may have varying thickness. In SP, we described
an indexing system in which xi denotes the position of the ith hor-
izontal node, while the schemas ke;m ¼ kðe1 ;e2Þ;m and
Uc;m ¼ Uðc1 ;c2 ;c3Þ;m are used to denote quantities attached to the
mth vertical level, to edges and triangles, respectively. The index
components ej and cj indicate the endpoints of edges and corners
of triangles, respectively.

The topology and geometry are illustrated, for the horizontal
and vertical grids, in the respective Figs. 1 and 2. The fields
Xðc1 ;c2 ;c3Þ and �xðe1 ;e2Þ denote, respectively the circumcenters of trian-
gular faces and the midpoints of edges. In the 3-D prismatic sche-
ma, horizontal velocity u is represented in terms of its normal
components at the rectangular horizontal faces of prisms, while
density, q, and pressure, p, reside at the circumcenters of the
prisms. Vertical velocity, w, is evaluated at the vertical triangular
faces and the time derivative of the surface displacement, g, is
therefore associated with the surface upwelling velocity, wz¼0.

Eq. (10) contains a number of schematic operators that act on
cell and edge fields. The difference operator, DU, evaluated at an
scheme, as well as some relevant geometric quantities (nodes, edge midpoints and

ructured C-grid based method for 3-D global ocean dynamics: ...,
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g. Reproduced from SP.
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edge, denotes the difference between the values of U at the two
circumcenters adjacent to the edge. Meanwhile, if F is a vector field
evaluated at circumcenters and F? is an approximation in terms of
edge normals, then the action of the operators ~C and ~C�1� is to sus-
tain the following approximations, i.e.:

F � ~CF? � XDT ð‘F?Þ�DT ð‘�xF?Þ
A

F? � ~C�1 � F � DðX�FÞ��x�DF
jDXj ;

ð11Þ

in which A and ‘ denote triangle areas and edge lengths, respec-
tively, while DT denotes the transpose of the difference operator,
D. The theoretical basis for Eq. (11), which generalize the projection
scheme of Perot (2000), is explained in SP, wherein it is demon-
Please cite this article in press as: Stuhne, G.R., Peltier, W.R., An unst
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strated how the quadratic norm of the vector field is preserved un-
der transformation between the circumcentral and edge-normal
representations.

Another operator schema that was introduced in Eq. (10) per-
tains to the discretization of the material conservation law under
advection and diffusion, i.e.:

Lðu; j; rÞU � � 1
A

DT ‘uhUi � ‘j DU
jDXj

� �
� DT

z

DT
z
�z

whUiz � rDzU
DzZ

� �

Lðu; 0; 0Þ1 ¼ �1
A

DTð‘uÞ � DT
z w

DT
z
�z
¼ 0;

ð12Þ

in which Z, �z, Dz, and DT
z are defined to be the simpler, vertical ana-

logues of X, �x, D, and DT , respectively, while h�i and h�iz schematize
the respective horizontal and vertical averaging of values adjacent
to faces.

The second equation in (12) corresponds to the application of
the general schema to the identity field, which furnishes the dis-
cretized Boussinesq non-divergence condition that enables w to
be determined in terms of u by vertical integration.

The implicit time evolution equation for density in (10) has the
same form as the scalar evolution equations in SP, i.e.:

1þ Dt
2 Lður ;lh;lvÞ

� �
qrþ1 ¼ 1� Dt

2 Lður ;lh;lvÞ
� �

qr þ DtFr
q; ð13Þ

and the discrete algebraic problem is solved with the aid of the
GMRES algorithm implemented by CERFACS (Frayss et al., 2003).
Once the iteration for qrþ1 is performed, qrþ1

2 ¼ 1
2 ðqr þ qrþ1Þ can be

used to determined the pressure from the hydrostatic balance
condition,

Dzp ¼ �hqDT
z
�ziz; ð14Þ

given the boundary condition for surface pressure, i.e.:

ps ¼ pm¼0 ¼ qrþ1
2

s g; ð15Þ

in which qs is the surface density.
The algebraic problem for advancing the coupled g and u fields

is analogous to Eq. (13), but considerably more complex. Using a
schematic form similar to that introduced in SP for the rigid-lid
problem, we get the following discrete system:

Iþ Dt
2
Pr

� �
urþ1

grþ1

� �
¼ I� Dt

2
Pr

� �
ur

gr

� �
þ Dt

~C�1 � Fr
u �

Dp
rþ1

2
h
jDXj

0

2
664

3
775;
ð16Þ

where I is the identity operator and

ð17Þ

Comparison with SP will verify that this expression is much
cleaner and more symmetric than the version with the rigid-lid
constraint, and Eqs. (16) and (17) yield a better-conditioned matrix
problem in the limit of small time-steps. As in SP, the GMRES algo-
rithm can be used to iteratively solve for urþ1 and grþ1.

3. Numerical tests

3.1. Mesh generation and bathymetry

In an unstructured grid context, there is a need for relatively
sophisticated techniques for generating meshes, assimilating data
ructured C-grid based method for 3-D global ocean dynamics: ...,
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such as bathymetry, and then consolidating these elements into an
executable simulation code whose results can subsequently be
analyzed. A number of the issues have been addressed in SP, and
since then a new software framework has been developed to orga-
nize and structure the various tasks in an integrated framework.
Script-based setup tools backed up by a graphical user interface
have been designed with the goals of facilitating the re-use of soft-
ware components while avoiding situations where older analyses
become orphaned and un-reproducible due to the evolution of
the system.

A full technical explanation of the mesh setup procedures
and the analysis software is beyond the scope of this paper.
We mention, however, that, as in SP, the global unstructured
grids for the test cases are generated by a quadtree method
beginning with a basic spherical icosahedron. Bathymetry is
again based on the ETOPO2 data set National Geophysical Data
Center (NGDC), 2001.

3.2. Protocols

To assess the skill of the numerical methods, a progression of ti-
dal test simulations is analyzed and compared against the results
of a generic regular grid scheme that has been locally implemented
by Griffiths and Peltier (2008) for purposes of analyzing tidal ef-
fects at last glacial maximum. Beyond the fact that results were
conveniently available, this work was a useful basis for comparison
because of the numerical technique being based on a second-order
Arakawa C-grid spatial discretization. This is the direct regular grid
analogue of our unstructured grid scheme, except that formal sec-
Fig. 3. Amplitude and phase plots from an equilibrated linear M2 tidal simulation perfo

Please cite this article in press as: Stuhne, G.R., Peltier, W.R., An unst
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ond-order accuracy is seen in SP to be lost with grid non-
uniformity.

An essentially constant protocol is used to perform and analyze
all of the unstructured grid tidal simulations. In integrating the
dynamical equations, we use standard values (see, e.g., Gill,
1982) of AM2 ¼ 0:34504 m and XM2 ¼ 1:405� 10�3 s�1 for the tidal
amplitude and frequency along with a drag coefficient of
cd ¼ 2:5� 10�3. When bottom drag is linearized, a characteristic
velocity of U� ¼ 1:0 m=s is assumed. Unless otherwise specified
with respect to particular results, the tidal equations were inte-
grated forward in time for 20 tidal periods (approximately 10
days), which is sufficient to achieve a periodic response in the lin-
ear barotropic mode. For purposes of comparison, standard meth-
ods are used to interpolate the tidal surface displacement, g, onto
latitude-longitude grids, enabling results to be easily depicted in
the form of amplitude-phase plots. Additional aspects of the vari-
ous solutions will be plotted when the discussion warrants.

3.3. Shallow-water dynamics

Resolving the global barotropic signal induced by tidal forcing
requires at least a linearized shallow-water dynamical system. Gi-
ven the linear and perturbative nature of the problem, these sim-
plified equations are, even in recently published work (e.g.,
Egbert and Ray, 2003), often sufficient for the analysis of tidal
physics. In Fig. 3, we show linear amplitude and phase results ob-
tained according to the protocols of Section 3.2, and with a uniform
unstructured grid of approximately uniform 0.5� node spacing over
the globe. The grid was generated as a level 7 quadtree refinement
rmed on a uniform level 7 (approximately 1/20) global icosahedral quadtree grid.

ructured C-grid based method for 3-D global ocean dynamics: ...,
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of the spherical icosahedron. Considering that regular grid resolu-
tion becomes finer at higher latitudes, this is comparable, overall,
to a latitude-longitude grid having 2/3� node spacing at the equa-
tor. Results from such a grid are shown in Fig. 4 for comparison.
The point to note is that the plots are essentially identical, which
is the hoped for result.

The case just described confirms the theoretical principle that
unstructured Arakawa C-grid tidal simulations should, with nearly
uniform grids in a 2-D shallow-water context, be as accurate as
analogous regular grid results. Under uniform conditions, however,
regular grids must be preferred because the linear array structure
of field data facilitates greater efficiency, especially on vector pro-
cessors. We did not optimize the code sufficiently to make reliable
quantitative comparisons, but it is reasonable to estimate from our
findings that unstructured grid simulations are, under identical
uniform grid conditions, an order of magnitude slower. This extra
investment of numerical resources can only be recouped if the
unstructured grid is used in a multi-scale context, in such a way
as to deliver locally enhanced resolution when a global regular grid
simulation at that resolution would be impractical.

Considering that unstructured grids will only be practically use-
ful in multi-scale contexts, we repeat the simulation whose results
are shown in Fig. 5 with an unstructured grid containing sharp res-
olution jumps. As discussed in SP and elsewhere, strong gradients
in mesh resolution and the attendant poorly shaped elements re-
sult in a degradation to first-order accuracy. This may cause prob-
lems as energetic small-scale Kelvin and gravity waves propagate
into regions of the mesh where they cease to be resolved. The best
Fig. 4. Amplitude and phase plots from a regular grid tidal solution comparable to the uns
longitude grid makes resolution as similar as possible.

Please cite this article in press as: Stuhne, G.R., Peltier, W.R., An unst
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way to assess whether this is occurring is by qualitative examina-
tion of the solution in the vicinity of the resolution discontinuities.
Since defects would not show up clearly in interpolated global
amplitude and phase plots, we instead examine the height field
solution at a fixed time level plotted directly onto an unstructured
mesh.

The local grid view shown in Fig. 5 has a relatively large region
about Hudson’s Bay in which the resolution is increased to quad-
tree level 8 (about 1/4�), leaving a sharp discontinuity in resolu-
tion at the boundary with the global level 7 grid. An inner
region encompassing most of the Bay and some of the small inlets
and channels in its northern reaches is further refined to level 9
(about 1/8�), leaving another sharp resolution jump. In spite of
this sub-optimal grid structure, however, the contour plots of
height in the ±1 m range (with 0.1 m contour spacing) show no
evidence of any distortions tied to the grid. Instead, the advanta-
ges of an unstructured grid multi-resolution approach in tidal
modeling are highlighted by the small-scale regions of high activ-
ity in channels and inlets that would not appear in the global level
7 grid.

The results plotted in Fig. 5 demonstrate that sharp resolution
gradients do not, in and of themselves, compromise shallow-water
tidal simulations in practically appreciable ways. It should be
noted, however, that circumcentral Arakawa C-grids of the type
that we are using can, without due diligence, easily incorporate
element pairs whose circumcenters collapse to a common point,
and this produces pathological inaccuracies. The software suite
that we have developed to generate grids incorporates a number
tructured grid results of Fig. 3. Physical parameters are identical and a 2/3� latitude–

ructured C-grid based method for 3-D global ocean dynamics: ...,
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illustrated mesh is enriched to level 8 and level 9 in two successive jumps, with the finest resolution being about 1/8�. Contours are spaced by 0.1 m/s in the range ±1 m/s.
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of smoothing operations that can be used to avoid such problems
through mesh optimization.

3.4. 3-D dynamics

Unstratified, hydrostatic 3-D dynamics are similar to shallow-
water dynamics, except that our discretization replaces the con-
tinuous bottom topography with a ‘‘stair step” bathymetry de-
fined by the prismatic z-coordinate system. The bottom frame
of Fig. 6 shows the amplitude plot obtained after integrating
the case of the previous subsection with the nonlinear model,
a uniform level 7 horizontal grid, and a vertical discretization
comprised of 10 levels of uniform 500 m thickness. The TOPEX/
Poseidon observational data for the M2 tide is shown in the
top frame for comparison purposes, and comparison can also
be made with the linear shallow-water case in Fig. 3. As should
be expected, the 10 level vertical representation results in very
poorly resolved coastal structures, but it can be seen that the
deep ocean amphidromal patterns at least as good as in the shal-
low-water case. The same observations can be made from the ti-
dal phase diagrams, which are shown in Fig. 7. Since we have
not attempted to optimize and tune the parameterizations that
were used, the actual fit to the TOPEX/Poseidon data is not a
major issue.

It is clearly promising that the barotropic results are repro-
duced in 3-D geometry, and the next natural step is to con-
sider the vertical structure of solutions. When vertical
stratification is added to the initial conditions, the results,
Please cite this article in press as: Stuhne, G.R., Peltier, W.R., An unst
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as expected, show the basic barotropic solution being non-
trivially perturbed due to interactions with bottom topogra-
phy. The energetics of density flows was considered in SP,
and shown to be very well represented by the numerical
scheme. In the present study, we did not go to high enough
resolution to represent baroclinic wave generation by the
barotropic tide, but small-scale results obtained by Fringer
et al. (2006) using SUNTANS show that C-grid methods can,
in principle, resolve the baroclinic tides. However, examination
of the grids used by these authors show that they clearly
have many more nodes per per baroclinic wavelength than
were used by Simmons et al. (2004) in their regular grid sim-
ulations of the global baroclinic tide. So, we have to ask
whether unstructured C-grid methods inherently need a sub-
stantially greater resolution than their regular grid counter-
parts, just to resolve the same physics.

Unfortunately, there is evidence to support the idea that large-
scale, coarsely resolved C-grid simulations may be hindered by
accuracy problems. In work described in a recent preprint, Danilov
(2008) has specifically identified a computational mode that ap-
pears to result from a numerical asymmetry between the discreti-
zations of divergence and curl. The energy-conserving character of
our scheme theoretically precludes the possibility of any exponen-
tially growing numerical instability, but an energetically stable
solution can still break down into non-physical ‘‘noise.” Evidence
of this phenomenon appears in our 3-D free-surface simulations
in Western boundary regions. As Danilov (2008) noted, the
problem can be controlled (but not completely eliminated) by
ructured C-grid based method for 3-D global ocean dynamics: ...,



Fig. 6. Tidal amplitude plot from an equilibrated grid level 7 3-D SWM tidal simulation with 10 vertical levels (bottom). The top frame shows TOPEX/Poseidon data for
comparison.
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modifying the pressure field in the momentum equation as fol-
lows: i.e.,

p! p� m�h
DTð‘uÞ

A
; ð18Þ

which has the effect of introducing a diffusion of divergence into
the dynamics. It naturally dissipates some of the physics of the solu-
tion as well, and this is one factor pointing to a need for extra res-
olution in the unstructured C-grid framework.
4. Conclusions

The unstructured grid numerical methodology presented in SP
for rigid-lid global baroclinic ocean dynamics has been extended
to shallow-water and 3-D free-surface dynamics. It performs well
in the resolution of the barotropic tides, which are not affected
by the unstructured C-grid computational mode. Other unstruc-
tured grid global shallow-water models have also been success-
fully applied to this problem (see, e.g. Carere and Lyard, 2003),
which provides a useful baseline for more challenging test cases.
In tandem with the previously published results in SP, the present
work bridges the gap to global, coarsely-resolved 3-D simulations
of the type relevant to climate modeling. Since we are among the
first to go in this direction, there is little to compare with in the
existing literature, and objective benchmarks need to be estab-
lished to measure the relative advantages and disadvantages of
unstructured and regular grid methods.
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Overall, it has always been clear that regular grid tech-
niques use computational resources more efficiently, when it
comes to global simulations with more-or-less uniform grid
resolution. With reference to these cases, the results herein
and in SP suggest that the traditional methods may be more
accurate as well, in the sense of requiring significantly less
resolution to represent comparable physics. Even when the
advantages of regular grids are compounded, however, there
is theoretically a point at which the variable resolution capac-
ity of unstructured grids should tip the balance in their favor.
For the case of C-grid based finite-volume methods, the tip-
ping point appears to be largely determined by the computa-
tional mode identified by Danilov (2008). The numerical
methods are theoretically second-order accurate in the uni-
form grid limit, but the need to damp numerical ‘‘noise”
can degrade the ideal properties.

It may be that an alternative unstructured grid numerical
methodology will turn out to be more appropriate for global,
coarsely-resolved simulations. Hall and Davies (2005), for exam-
ple, used a local, high-resolution finite element model to resolve
baroclinic dynamics associated with the tides. These authors,
however, report artifacts arising from variable mesh resolution,
and their plotted results do not look any better than the C-grid
results of Fringer et al. (2006). One thing that should be agreed,
however, is that the physics of the internal tides provides an
ideal test case for the comparison and validation of global
unstructured grid techniques. That leaves us with a challenge
for future research.
ructured C-grid based method for 3-D global ocean dynamics: ...,



Fig. 7. Tidal phase plot from the case of Fig. 6, again compared with TOPEX data.
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